BS2243 – Lecture 4 Cournot duopoly and extensions

Spring 2012

(Dr. Sumon Bhaumik)

Cournot duopoly – market structure

- Two firms (A and B)
 - Example: OPEC and non-OPEC oil producing countries
- Homogeneous product
- Competition in quantities
- Each firm assumes that the other firm will not react to its own choice of output

Cournot duopoly – strategic behaviour

Firm behaviour

Reaction function

Cournot duopoly – Nash equilibrium

- Each firm's output depends on the output choice of the other firm: <u>Nash strategy</u>
- At the quantity levels
 defined by the intersection
 of the two reaction
 functions, neither firm has
 any incentive to change
 output: equilibrium

Algebra of Cournot duopoly - I

Inverse demand curve

$$P = 1000 - 10Q$$

- Two identical firms
 - Firm 1 produces q_1 and Firm 2 produces q_2 $q_1 + q_2 = Q$
- Cost structure

$$AC = MC = 50$$

Algebra of Cournot duopoly - II

- Profit maximising condition for a firm MC = MR
- Decision
 - How much to produce?
- Rewriting inverse demand curve

$$P = 1000 - 10(q_1 + q_2)$$

$$P = 1000 - 10q_1 - 10q_2$$

Marginal revenue curve

```
Firm 1: (1000 - 10q_2) - 20q_1
Firm 2: (1000 - 10q_1) - 20q_2
```

Algebra of Cournot duopoly - III

Profit maximisation

Firm 1:
$$(1000 - 10q_2) - 20q_1 = 50$$

 $20q_1 + 10q_2 = 950$ (Verify: $q_1 = 47.5 - 0.5q_2$)
Reaction function of Firm 1

Firm 2:
$$(1000 - 10q_1) - 20q_2 = 50$$

 $10q_1 + 20q_2 = 950$ (Verify: $q_2 = (95/2) - 0.5q_1$)
Reaction function of Firm 2

• Nash equilibrium Solve the reaction functions simultaneously $20q_1 + 10q_2 = 950$ $10q_1 + 20q_2 = 950$

Algebra of Cournot duopoly - IV

Quantities in equilibrium
 Solving the reaction functions simultaneously
 q₁ = , q₂ =

• Price in equilibrium $P = 1000 - 10(q_1 + q_2) =$

• Profits in equilibrium

$$\pi_1 = (P - AC) \times q_1 = \pi_2 = (P - AC) \times q_2 = \pi_2$$

Strategy I – merger or collusion

- Market effectively has one multi-plant firm
 - Firm 1 has become Plant 1, and Firm 2 has become Plant 2

- Decisions
 - How much to produce?
 - How to distribute the output between the two plants?

Strategy I – incidence of merger

Source: Office of National Statistics

Strategy I – intuition

 The multi-plant firm will set output at the level where MC = MR

 It will allocate a larger share of the output to the firm with the lower cost

 If the plants have identical cost structures, the optimum output will be equally divided between the two plants

Algebra for Strategy I – I

Inverse demand curve

$$P = 1000 - 10Q$$

- Two identical plants
 - Plant 1 produces q_1 and Plant 2 produces q_2 $q_1 = q_2 = Q/2$
- Cost structure

$$AC = MC = 50$$

Profit maximising condition for a firm

$$MC = MR$$

 $50 = 1000 - 20Q$

Algebra for Strategy I – II

Decisions

- How much to produce?
 1000 20Q = 50
 20Q = 950
 Q = 47.5
- How to distribute output between the two plants? $q_1 = q_2 = Q/2 = 47.5/2 = 28.75$

Outcomes

$$P = 1000 - 10Q = 1000 - (10 x 47.5) = 525$$

 $\pi = (P - AC) x Q = (525 - 50) x 47.5 =$
In case of collusion, profit shared equally by the two firms

Strategy II – lobby for subsidy

http://blogs.wsj.com/environmentalcapital/2009/05/07/biofuels-bill-federal-subsidies-will-top-400-billion-enviros-say/tab/article/

Strategy II – impact of subsidy

- Subsidy reduces marginal cost of production
- The new marginal cost equals the marginal revenue at a higher output level
- The optimum output level of the firm is higher

Algebra for Strategy II – I

Inverse demand curve

$$P = 1000 - 10Q$$

- Two identical firms
 - Firm 1 produces q_1 and Firm 2 produces q_2 $q_1 + q_2 = Q$
- Firm 1 gets a subsidy of 10 per unit of output
- Cost structure

Firm 1:
$$AC = MC = 50 - 10 = 40$$

Firm 2:
$$AC = MC = 50$$

Algebra of Strategy II - II

- Profit maximising condition for a firm MC = MR
- Decision
 - How much to produce?
- Rewriting inverse demand curve

$$P = 1000 - 10(q_1 + q_2)$$

$$P = 1000 - 10q_1 - 10q_2$$

Marginal revenue curve

```
Firm 1: (1000 - 10q_2) - 20q_1
Firm 2: (1000 - 10q_1) - 20q_2
```

Algebra of Strategy II - III

Profit maximisation

Firm 1:
$$(1000 - 10q_2) - 20q_1 = 40$$

 $20q_1 + 10q_2 = 960$ (Verify: $q_1 = 48 - 0.5q_2$)
Reaction function of Firm 1

Firm 2:
$$(1000 - 10q_1) - 20q_2 = 50$$

 $10q_1 + 20q_2 = 950$
Reaction function of Firm 2

• Nash equilibrium Solve the reaction functions simultaneously $20q_1 + 10q_2 = 960$ $10q_1 + 20q_2 = 950$

Algebra of Strategy II - IV

- Quantities in equilibrium
 Solving the reaction functions simultaneously
 q₁ = , q₂ =
- Price in equilibrium $P = 1000 - 10(q_1 + q_2) =$
- Profits in equilibrium $\pi_1 = (P AC) \times q_1 =$

$$\pi_2 = (P - AC) \times q_2 =$$

Strategy III – become a Stackelberg leader

- Firm A (the Stackelberg leader) takes the strategic behaviour of Firm B into consideration
- Note the difference in the residual demand curve (relative to the Cournot competition scenario)
- In equilibrium, Firm A (the leader)
 would be better off and Firm B
 (the follower) would be worse off

Strategy III – become a Stackelberg leader

From concept to algebra

Cournot duopoly

- Each firm naively maximises profits by setting MC = MR
- Profit maximisation gives us the reaction functions of the firms
- We then have two equations (reaction functions) with two unknowns (q₁ and q₂)
- Plugging the quantities into the demand function gives us the price
- The price, costs and quantities together give us the profits

Stackelberg duopoly

- The follower (Firm 2) naively maximises profits by setting MC = MR
- Profit maximisation gives us the reaction function of the follower
- The leader (Firm 1) takes the follower's reaction function into consideration when it decides on its residual demand curve
- The leader's profit maximisation gives us q₁
- Using this in the reaction function of the follower gives us q₂
- We get price and profits as in Cournot

Algebra of Stackelberg duopoly - I

Inverse demand curve

$$P = 1000 - 10Q$$

- Two identical firms
 - Firm 1 produces q_1 and Firm 2 produces q_2 $q_1 + q_2 = Q$
 - Firm 1 is Stackelberg leader
- Cost structure

$$AC = MC = 50$$

Algebra of Stackelberg duopoly - II

Profit maximisation of Firm 2

$$(1000 - 10q_1) - 20q_2 = 50$$
 (from the algebra of Cournot)
 $10q_1 + 20q_2 = 950$ (reaction function of Firm 2)
 $q_2 = (950 - 10q_1)/20 = 47.5 - 0.5q_1$

Demand function of Firm 1

$$P = 1000 - 10q_2 - 10q_1$$

= 1000 - 10(47.5 - 0.5q₁) - 10q₁ = 525 - 5q₁

Profit maximisation of Firm 1

$$525 - 10q_1 = 50$$

Algebra of Stackelberg duopoly - III

- Quantities in equilibrium
 First solve the profit maximisation problem of Firm 1
 q₁ =
 Then substitute q₁ into the reaction function of Firm 2
 q₂ =
- Price in equilibrium $P = 1000 - 10(q_1 + q_2) =$
- Profits in equilibrium

$$\pi_1 = (P - AC) \times q_1 = \pi_2 = (P - AC) \times q_2 = \pi_2$$